If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3x^2-1=15
We move all terms to the left:
1/3x^2-1-(15)=0
Domain of the equation: 3x^2!=0We add all the numbers together, and all the variables
x^2!=0/3
x^2!=√0
x!=0
x∈R
1/3x^2-16=0
We multiply all the terms by the denominator
-16*3x^2+1=0
Wy multiply elements
-48x^2+1=0
a = -48; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-48)·1
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-48}=\frac{0-8\sqrt{3}}{-96} =-\frac{8\sqrt{3}}{-96} =-\frac{\sqrt{3}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-48}=\frac{0+8\sqrt{3}}{-96} =\frac{8\sqrt{3}}{-96} =\frac{\sqrt{3}}{-12} $
| 35=7⋅2⋅b | | 8x-14+30x=2x+3x+24 | | 8x-37=+71 | | 204=a-149 | | 8x-37=71 | | 18=m-15 | | g-39=117 | | d=1/2(9.8(100)^2) | | d=1/2(9.8100^2) | | 12a-4=20 | | 13x+35x-1=6x-6 | | 3x+1=19+2x | | 24-4x=27-12x | | 2x3^x=54 | | 10y-12=-14+12y | | 4-z/16=15 | | 50(6=r)=475 | | 2x+16=10x+8 | | 21-2b=22 | | (m−29)÷13=25 | | 7y-15=3y-35 | | 8x+22=20 | | 12x–5=7x | | 6x-15=3-12x | | I3x+1I=2 | | x^2+31x+240=0 | | 2(m-1)+2(m-2)=5 | | 49^5x+2=1/7^14-x | | (5⁴)m=5¹² | | x^2-17x+90=0 | | 9+2z=7(4)+7 | | 6z+8=40/2 |